在谷歌图片搜索中, 用户可以上传一张图片, 谷歌显示因特网中与此图片相同或者相似的图片.
比如我上传一张照片试试效果:
参考Neal Krawetz博士的这篇文章, 实现这种功能的关键技术叫做"感知哈希算法"(Perceptual Hash Algorithm), 意思是为图片生成一个指纹(字符串格式), 两张图片的指纹越相似, 说明两张图片就越相似. 但关键是如何根据图片计算出"指纹"呢? 下面用最简单的步骤来说明一下原理:
将图片缩小到8x8的尺寸, 总共64个像素. 这一步的作用是去除各种图片尺寸和图片比例的差异, 只保留结构、明暗等基本信息.
将缩小后的图片, 转为64级灰度图片.
计算图片中所有像素的灰度平均值
将每个像素的灰度与平均值进行比较, 如果大于或等于平均值记为1, 小于平均值记为0.
将上一步的比较结果, 组合在一起, 就构成了一个64位的二进制整数, 这就是这张图片的指纹.
得到图片的指纹后, 就可以对比不同的图片的指纹, 计算出64位中有多少位是不一样的. 如果不相同的数据位数不超过5, 就说明两张图片很相似, 如果大于10, 说明它们是两张不同的图片.
下面我用C#代码根据上一节所阐述的步骤实现一下.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
using System;
using System.IO;
using System.Drawing;
namespace SimilarPhoto
{
class SimilarPhoto
{
Image SourceImg;
public SimilarPhoto(string filePath)
{
SourceImg = Image.FromFile(filePath);
}
public SimilarPhoto(Stream stream)
{
SourceImg = Image.FromStream(stream);
}
public String GetHash()
{
Image image = ReduceSize();
Byte[] grayValues = ReduceColor(image);
Byte average = CalcAverage(grayValues);
String reslut = ComputeBits(grayValues, average);
return reslut;
}
// Step 1 : Reduce size to 8*8
private Image ReduceSize(int width = 8, int height = 8)
{
Image image = SourceImg.GetThumbnailImage(width, height, () => { return false; }, IntPtr.Zero);
return image;
}
// Step 2 : Reduce Color
private Byte[] ReduceColor(Image image)
{
Bitmap bitMap = new Bitmap(image);
Byte[] grayValues = new Byte[image.Width * image.Height];
for(int x = 0; x<image.Width; x++)
for (int y = 0; y < image.Height; y++)
{
Color color = bitMap.GetPixel(x, y);
byte grayValue = (byte)((color.R * 30 + color.G * 59 + color.B * 11) / 100);
grayValues[x * image.Width + y] = grayValue;
}
return grayValues;
}
// Step 3 : Average the colors
private Byte CalcAverage(byte[] values)
{
int sum = 0;
for (int i = 0; i < values.Length; i++)
sum += (int)values[i];
return Convert.ToByte(sum / values.Length);
}
// Step 4 : Compute the bits
private String ComputeBits(byte[] values, byte averageValue)
{
char[] result = new char[values.Length];
for (int i = 0; i < values.Length; i++)
{
if (values[i] < averageValue)
result[i] = '0';
else
result[i] = '1';
}
return new String(result);
}
// Compare hash
public static Int32 CalcSimilarDegree(string a, string b)
{
if (a.Length != b.Length)
throw new ArgumentException();
int count = 0;
for (int i = 0; i < a.Length; i++)
{
if (a[i] != b[i])
count++;
}
return count;
}
}
}
|
谷歌服务器里的图片数量是百亿级别的, 我电脑里的图片数量当然没法比, 但以前做过爬虫程序, 电脑里有40,000多人的头像照片, 就拿它们作为对比结果吧! 我计算出这些图片的"指纹", 放在一个txt文本中, 格式如下.
用ASP.NET写一个简单的页面, 允许用户上传一张图片, 后台计算出该图片的指纹, 并与txt文本中各图片的指纹对比, 整理出结果显示在页面中, 效果如下:
本文地址: http://www.cnblogs.com/technology/archive/2012/07/12/Perceptual-Hash-Algorithm.html